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Abstract—Numerical typing errors can lead to serious conse-
quences, but various causes of human errors and the lack of con-
textual clues in numerical typing make their prediction difficult.
Human behavior modeling can predict the general tendency in
making errors, while data mining can recognize neurophysiologi-
cal feedback in detecting cognitive abnormality on a trial-by-trial
basis. This study suggests integrating human behavior modeling
and data mining to predict human errors because it utilizes both 1)
top-down inference to transform interactions between task char-
acteristics and conditions into a general inclination of an average
operator to make errors and 2) bottom-up analysis in parsing psy-
chophysiological measurements into an individual’s likelihood of
making errors on a trial-by-trial basis. Real-time electroencephalo-
graph (EEG) features collected in a numerical typing experiment
and modeling features produced by an enhanced human behavior
model (queuing network model human processor) were combined
to improve error classification performance by a linear discrim-
inant analysis (LDA) classifier. Integrating EEG and modeling
features improved the results of LDA classification by 28.3% in
keenness (d′) and by 10.7% in the area under ROC curve (AUC)
from that of using EEG only; it also outperformed the other three
benchmarking scenarios: using behaviors only, using apparent task
features, and using task features plus trial information. The AUC
was significantly increased from using EEG along only if EEG +
Model features were used.

Index Terms—Behavior modeling, data mining, electroen-
cephalograph (EEG), human errors, linear discriminant analysis,
numerical typing.

I. INTRODUCTION

HUMAN errors in numerical typing tasks can induce fi-
nancial loss, safety threats, or even fatalities in critical

systems [1]–[3]. Error prevention with numerical data entry,
however, is particularly difficult. First, there are no unified the-
ories concerning error mechanisms [4]. Errors may reflect the
cumulative effects of many different factors and involve prere-
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sponse conditions and postresponse processes [5]. Thus, behav-
ioral, psychophysiological, and biomechanical evidence should
converge to explain how humans commit errors. Although Salt-
house [6] investigated alphabetical typing errors and concluded
that typing errors could occur in either input (perception of
inputs), parsing (recognition of inputs), translation (formation
of movement specifications) or execution (production of move-
ments) phases of the cognitive process, Lin and Wu [7] found
that error mechanisms for alphabetical typing did not necessar-
ily translate to numerical typing. Furthermore, automatic error
detection for numerical typing is difficult due to the lack of con-
textual clues. For example, “CAK” can be detected as a potential
error because there is no such word, but numerical data may only
have patterns with respect to format, maximum, minimum, or
ranges. The various causes of human errors and the difficulty in
detecting human errors by contextual clues in numerical typing
suggest a need for proactive error prevention methods based on
psychophysiological measurements that reflect real-time status
of various cognitive processes and functional changes in brain
activity.

Multichannel electroencephalograph (EEG) is a psychophys-
iological measurement of brain activity in a waveform that is
sensitive to functional changes and indicative of mental sta-
tus. EEG of different spectra can provide valuable insights to
states of vigilance [8], fatigue [9], [10], emotion [11], atten-
tion/concentration [12], and even different cognitive tasks [13],
[14]. For example, wakefulness was negatively related to alpha
activity (8–13 Hz) [8]. EEG signals collected from different
sites of the scalp also provide functional mappings to cortical
areas. For example, error-related brain potentials are most char-
acterized by the EEG signals along the frontal-central part of
the midline (e.g., Cz and Fz electrode according to international
10–20 system) as the anterior cingulate cortex is the major area
responsible for error detection [4], [15]. Whenever there is a
hand movement, EEG displays an event-related desynchroniza-
tion (ERD) on the contralateral side of the parietal lobes where
the somatosensory cortex is located [16]. More importantly,
motor-related cortical components (MRCPs) in EEG have been
used to predict movement accuracy because they indicate motor
preparedness [17]. Although the information in MRCPs was a
reliable indicator of error occurrence, insufficient motor pre-
paredness at the planning stage in the central nervous system
may result in low movement accuracy when motor commands
are carried out by peripheral motor systems.

Although multichannel EEG was informative for functional
changes in different cortical areas and for motor accuracy, EEG

2168-2291 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



40 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 45, NO. 1, FEBRUARY 2015

analysis is an inherently challenging task. First, EEG contains
nonstationary, stochastic signals [10]. An EEG pattern in asso-
ciation with severe abnormality such as an epileptic seizure is
rather unpredictable. Even medical experts can confuse what
event is happening [18]. Distinguishing between less salient
differences between EEGs associated with correct and error re-
sponses is difficult. Furthermore, prolonged collection of online
EEG data creates large datasets, the majority of which may be ir-
relevant to the event of interest, and may require tedious analysis
processes [10]. Finally, EEG responses are subject to artifacts
(e.g., muscular artifacts due to eye movements [19]), noise (e.g.,
electromagnet interference [20]), and subject-dependent EEG
characteristics. For example, the position of ERD may vary be-
tween subjects, and the optimal frequency band for analysis is
also subject-specific [16]. Those challenges call for a robust
methodology to recognize mental states and identify functional
changes by analyzing multichannel EEG.

Using data mining techniques to classify multichannel EEG
signals into normal and error-related states may be an effective
solution to prevent errors in numerical typing if error-related
states can be detected beforehand. Although EEG can reflect
motor preparedness of movements to a certain extent [21], its
predictive power for final motor execution is limited. Wang
et al. [22] obtained 0.35 and 0.47 for keenness (d′) of error de-
tection using support vector machine (SVM) and linear discrim-
inant analysis (LDA) classifiers, respectively. The relatively low
keenness revealed that EEG alone was insufficient for capturing
information relevant to typing errors due to peripheral processes
beyond cognition. For example, neuromotor noise theory states
that a perceptual-motor system is a stochastic system. There-
fore, psychological stressors would enhance its inherent noise
and biomechanical filtering needs to control resultant physio-
logical tremors [23]–[25]. When speedy movements are pushed
beyond a certain optimal point, errors may be caused by spa-
tial variability of the motoric movements even if the cognitive
process is well controlled. Furthermore, one cannot obtain good
results in classifying EEG data when error rates are generally
low and variation is large across subjects [4] as training with
EEG data from error and correct trials is difficult.

To better predict human errors, a computational behavior
model that involves conceptual, cognitive, and motor processes
may be necessary. In successive responses during numerical
typing, a slow reaction in one keystroke can delay another
keystroke, and typing with single or multiple fingers may im-
ply different difficulty. Time pressure also impacts the spatial
variability of movements negatively. Those trends are not cap-
tured by analyzing EEG in single trials but well reflected in
the modeling results. Therefore, combining human behavioral
modeling features that transform observations to possibilities
of human errors and EEG features that give real-time human
cognitive status can improve results of error detection. Human
behavioral modeling can complement single trial EEG analysis
by supplementing the general inclination of making errors given
task conditions while EEG features reflect functional changes
in cortical activities on a trial-by-trial basis. In the center of
Fig. 1, an error occurs when the task is difficult (symbolized by
a thick circle) and the human is not well prepared (signified by
noisy EEG). Data mining learns this by bottom-up training, but it

only captures the human part of the nature (psychophysiological
feedback). In contrast, a human behavior model is constructed
top-down, establishing relationships between tasks and behav-
iors without knowing the human’s mental status. Integration is
compatible with the analysis by synthesis [26] approach based
on the belief that, if the underlying model for production of
outcomes (e.g., human errors) can be determined, then the ac-
tions to produce outcomes (e.g., behaviors that are observed
before the errors) can be classified. In other words, if a model
can predict final behavior outcomes (e.g., human errors) based
on environmental inputs, such as external task demands and
time stress, then the intermediate outputs of the model that are
used to determine the final outcomes should be classifiable, and
their combination with EEG data should render patterns more
distinguishable.

This study presents a new numerical typing error prediction
framework based on integrated psychophysiological and be-
havioral modeling features. This study also demonstrates that
behavior modeling features can improve the error prediction by
data classification better than apparent task features (i.e., char-
acteristics of tasks that are influential to the performance but
can be obtained without a human behavior model) does. This
paper presents a framework to integrate real-time brain activity
features through analysis of EEG signals before the typing re-
sponses with behavior modeling features based on prior knowl-
edge of error mechanisms generated offline by an enhanced
queuing network-model human processor (QN-MHP) model.
An LDA classifier is trained using three integrated feature sets
(EEG + Modeling, EEG + Task, and EEG + Task + Condi-
tion), and its error prediction performance is compared with the
performance when only EEG features are used.

The rest of the paper is as follows. Section II highlights related
research in data mining with error-related EEG components.
Section III includes the EEG data collection methods and EEG
feature extraction. Section IV provides the generation of behav-
ioral modeling features, the extraction of task-related features,
and data classification by an LDA classifier. The classification
results are in Section V. The discussion is in Section VI.

II. RELATED WORK

When EEG was analyzed with data mining technique, re-
searchers used to focus on its applications to brain–computer
interfaces (BCIs) [27], where EEG classifiers served as fea-
ture translators that convert EEG features into logical con-
trol commands. In general, linear classifiers (e.g., LDA) are
more robust than nonlinear ones [e.g., artificial neural net-
work (ANN)] because they have fewer parameters to tune and
are less prone to overfitting [27], [28]. Averaging/rejecting
activations of low certainty, debounce blocking (i.e., the in-
terface is deactivated during a refractory period), and event-
related negativity were often used as postprocessing methods
to reduce errors in using BCIs. Error detection was generally
conducted posteriorly, while proactive error prevention (i.e., pre-
dicting errors before the commands were sent or when the user
was unaware of errors) was absent. Chavarriaga et al. [29] as-
sessed whether recognizing error-related EEG potentials during
gesture-based human–computer interaction could improve the
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Fig. 1. Conceptual diagram of integration.

system (i.e., only trials that were not classified as errors would
be considered correct recognitions of gestures). With a recur-
sive Bayesian estimation technique, the classifier’s performance
reached above random level in six out of seven subjects, and it
improved the gesture recognition rate of a k-nearest neighbor
classifier by 6.4%. Blankertz et al. [30] used a Fisher discrimi-
nant classifier to detect error-related potentials in a two-choice
reaction time task and obtained above a 78% detection (hit) rate
from seven out of eight subjects. Parra et al. [31], [32] utilized
an LDA classifier to detect error-related potentials in a visual
detection task (flanker task) and the classification achieved 0.79
AUC (area under ROC curve) with 64-channel EEG. Their on-
line application showed 21.4% ± 21.7% error reduction rate
(two out of seven subjects showed degradation in performance).
Autoerror recovery in BCI operations using event-related po-
tential such as P300 as a response verification mechanism was
also reported [33].

The aforementioned research utilized error-related or event-
related brain potentials elicited after responses, but neurophys-
iological literature shows that some EEG components that oc-
cur before responses may indicate motor preparedness and thus
are predictive of final response accuracy. For example, Bere-
itschaftspotential (BP) and negative slope (NS) of MRCPs were
associated with preparation and/or execution of voluntary move-
ments [21]. They were differentiated in that BP was affected by
psychological factors such as level of intention, preparation, and
movement selection, but NS was related to physical factors such
as precision, discreteness, and complexity of the movement it-
self [34]. BPs of professional athletes were short in duration
with smaller amplitudes and earlier onsets than those of non-
professionals [35], [36]. The NS component was predictive of
movement accuracy in aiming tasks [17]. Furthermore, planning
and execution of hand and/or finger movement desynchronize
the mu rhythms, and the power decrease of this ERD can be
used to discriminate four motor imagery tasks (left-hand, right-
hand, foot, and tongue) based on classification of single EEG
trials [37]. LDAs have also been used to differentiate spatial
features of multichannel EEGs processed by different indepen-

dent components analysis algorithms from four motor imagery
tasks [38]. The evidence showed a promising potential for using
LDA to classify EEG components before responses as method
to predict motor accuracy in advance.

Studies have attempted to adopt data mining techniques, in-
cluding feature combination, utilization of inverse models, and
contrast enhancing. Dornhege et al. [28] combined MRCP fea-
tures and ERD features by a joint probabilistic modeling (PROB)
method and used LDA classifiers tailored specifically for those
complementary features to obtain bit rate gains as high as 50%.
Ferrez [39] claimed that inverse models can reconstruct neu-
ronal sources of brain activities measured at the scalp (e.g.,
EEG) so that better estimates of intracranial activity can be pro-
vided. He tested the cortical current density (CCD) model and
the estimated local filed potential (eLFP) model which provided
estimated intracranial activity and compared them with temporal
EEG features. The CCD model features increased the recogni-
tion rate of error trials in a BCI interface by 2%, while the eLFP
model features degraded the performance of a Gaussian clas-
sifier by 2%. Other studies tried to enhance contrast by recon-
structing (e.g., wavelet transform [40]) or recovering (e.g., blind
source separation [41]) EEG features from noises and artifacts.
Thus, while different modeling techniques have been used to
enhance or reconstruct psychophysiological features to improve
BCI effectiveness, the potential of combining behavioral model-
ing features and EEG features to prevent human errors in generic
human–computer interaction, however, has never been studied.

III. METHODS FOR ELECTROENCEPHALOGRAPH

COLLECTION AND EXTRACTION

A. Task

The task was a simulated numerical hear-and-type [7] task. A
desktop computer played 30 random combinations of nine digits
in each trial and subjects were instructed to press correspond-
ing keys one-by-one when they heard the verbally presented
numbers.
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Fig. 2. Recommended fingering pattern.

B. Subjects

Eight right-handed university community members volun-
teered to participate in this study, including four males and four
females. The average age of subjects was 22.3 ± 1.8 and their
time was compensated.

C. Procedure

Subjects were pretested following the procedure in [7] to as-
sure their numerical typing skills. If they qualified, they contin-
ued eight experimental trials of different speech rates, fingering
strategies, and urgency after a five minute break. In each trial,
subjects were asked to type both quickly and accurately. To
avoid accumulating fatigue, subjects were asked to rest for five
minutes after four consecutive trials.

D. Trial Design

Three variables were used to create the trials.
1) Speech Rate: To simulate different speech rates, the desk-

top PC played the random numbers at two different speeds:
high (2 digit/s) and low (1 digit/s).

2) Fingering Strategy: There were two possible fingering
strategies: single finger (index finger) or multiple fingers
(based on a recommended fingering pattern in Fig. 2).

3) Urgency: Subjects were asked to hurry while maintaining
accuracy in the urgent trials. To assure their compliance
to the instruction, a performance-based bonus was given
in urgent trials. The amount of bonus was determined by
the percentage of fast and accurate responses, i.e., correct
keystrokes within 600 ms.

Each subject performed one trial at each combination of factor
levels [2 (speech rate) × 2 (fingering strategy) × 2 (urgency)]
for a total of eight trials.

E. Data Collection and Extraction

During the experiment, EEG data were collected by an EEG
cap containing 40 Ag/AgCl electrodes according to the inter-
national 10–20 system. The signals were sampled at 1000 Hz
and amplified by the NuAmps Express system (Neuroscan Inc.,
Charlotte, NC, USA). Raw EEG data were first processed by a dc

to 30-Hz bandpass filter (EEG above 30 Hz greatly overlapped
with the muscular artifacts that might incur due to typing move-
ments [20]). Filtered EEG data in a time window from 450 ms
before keystrokes to 0 ms at keystrokes were then extracted as
epochs. 450-ms length was chosen because otherwise the seg-
ments of different keystrokes would overlap. All epochs were
baseline corrected to eliminate signal drifts and downsampled to
20 Hz. The amplitudes of downsampled EEG were used as tem-
poral features and were further decomposed to 150-ms subsets,
resulting three features in three subsets for each electrode [42].
Only features from six electrodes (FC3, FCZ, C3, CZ, CP3, and
CPZ) were used for further data classification (those electrodes
located above the motor sensory cortex and close to the area
in charge of right hand movements). All data processing was
conducted by batch functions in the Edit module of the Scan 4.3
software (Neuroscan Inc., Charlotte, NC, USA).

IV. OTHER FEATURE GENERATION, EXTRACTION,
AND DATA CLASSIFICATION

A. Modeling Feature Generation

Of the human behavior models proposed to account for typ-
ing behaviors [43]–[45], the QN-MHP covers the majority of
behavior phenomena observed from skillful typists [6], [43]. It
is a computational architecture consisting of perceptual, cogni-
tive, and motor subnetworks where different servers represent
information-processing units that simulate cortical functions.
Links connect servers and represent neurological pathways be-
tween cortical areas (see Fig. 3). See [43] for mapping of the
QN-MHP architecture to neurological research findings.

An enhanced QN-MHP model [46] was used in this study
to generate modeling features for numerical typing. It incorpo-
rated several mechanisms to account for changes in performance
time and accuracy under different pacing (speech rates), motor
control (fingering strategies), and urgency conditions. A top-
down control routed information entities actively to simulate an
enforced delay directed by the prefrontal cortex during multi-
tasking due to cognitive-bottleneck [47], resulting a two-task
interference (see Fig. 3). Close-loop control was assumed to re-
place ballistic movement control under urgency [48], resulting
in a speed–accuracy tradeoff. A change of the fingering strat-
egy (one finger or multiple) could affect performance time and
accuracy through a NGOMSL-style response-selection proce-
dure and a neuromotor noise modeling. Multifinger typing (see
Table I) was assumed to take one additional cycle for deciding
which finger to use.

The enhanced QN-MHP also quantified neuromotor noise

σu =

√
k2

SDN · u2

c2 + k2
CN · I2 + k2

TN · c2 (1)

where σu was extent of noise added to muscle activation level
u in a movement duration c∗MT0 (MT0 = 420 ms, average
movement time from [49]). kSDN , kCN , and kTN were constants
for relative weights of three noise components: signal-dependent
noise (SDN), constant noise (CN), and temporal noise (TN).
Their settings can be found in [46]. From (1), noise increased
with the muscle activation level (u) during multifinger typing,
because it required more motor unit recruitment to compensate
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Fig. 3. QN-MHP architecture and server functions.

TABLE I
NGOMSL-STYLE TASK PROCEDURE FOR NUMERICAL TYPING AT SERVER F

GOAL: Do numerical typing task method for GOAL: Press
<key> at < location> with <finger>

Step 1 Retrieve < location> of <number> on a numerical keyboard from LTM
Step 2 Watch for < label> around < location>

Step 3 Recall <finger strategy> from LTM
Step 4 Decide if <finger strategy> matches <single finger>

IF MATCH go to step 5
ELSE go to step 7

Step 5 Press <key> at < location> with < index finger>
Step 6 Return with goal accomplished
Step 7 Decide <finger to use> based on < location>

Step 8 Press <key> at < location> with < finger to use >

Step 9 Return with goal accomplished

for a finger force deficit caused by finger-enslaving effects [50]
and thus generated more neuromotor noise.

Based on neuromotor noise theory, the spatial variability
of movements is proportional to neuromotor noise. Therefore,
the endpoint variability increased when multifinger typing was
used. During fast pacing, CN was assumed to be magnified by
interference index (I)

I = DL/(Ti,C + Ti,F + Ti,C ) (2)

where DL is the delay caused by the two-task interference;
Ti,C and Ti,F are processing times for information entity i at
server C and server F in the cognitive subnetwork (see Fig. 2).
The calculation of DL and settings of Ti,C and Ti,F parame-
ters are described in [46]. When hurried (the urgent trials), the
typists were assumed to alter their movement mode from visu-

Fig. 4. Endpoint variability in two orthogonal directions.

ally guided aiming to ballistic aiming (regulated by server Y
in Fig. 3), resulting in loss of correction at the homing phase
and higher spatial variability. Based on those mechanisms and
other QN-MHP assumptions (e.g., the response time to an infor-
mation entity can be computed by summarizing the processing
time of the entity at each server on its path in Fig. 2 plus a key-
closure time), the response time for different typing conditions
can be generated. In addition, the spatial variability can be com-
puted and further decomposed into two orthogonal components
that are parallel and perpendicular to the movement direction
(see Fig. 4). The predicted response time, the aiming shifts esti-
mated in x-direction (Δx) and in y-direction (Δy), together with
interference index (I) from equation (2) were used as modeling
features.
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B. Task Feature Extraction

Combining modeling features with EEG features may benefit
data classification because the integrated feature set contains
apparent task characteristics that may imply task difficulty and
are thus indicative of susceptibility to errors. Four apparent
task features were selected to test if combining them with EEG
features alone can produce similar results to that of combining
modeling features with EEG features.

1) Number to be pressed (N): Different numbers to be pressed
mean different reaching difficulty and were thus relevant
to errors. For example, “3” and “7” keys were more diffi-
cult to reach on a standard numerical keypad [7].

2) Quickness of previous keystroke (Q): In numerical hear-
and-type tasks, keystrokes were made successively and
rhythmically. When a keystroke was made too quickly or
too slowly, it might disturb the typing rhythm and cause
errors for the following keystroke. The quickness of the
previous keystroke was quantified as the average velocity
of the previous keystroke, i.e.

Qi−1 = D(Ni−2 , Ni−1)/PTi−1 (3)

where Qi−1 was the quickness of the previous keystroke
(the current keystroke is the ith keystroke) and the D(Ni−2 ,
Ni−1) was the travel distance of the previous keystroke
(from key Ni−2 to Ni−1). PT is the response time of
the previous keystroke that could be obtained by online
behavior feedbacks, i.e., reaction time measurements.

3) Fitts’ difficulty index (DI): Fitts’ DI was used to quantify
movement difficulty in aiming

DI = log2(2 ∗ D/S) (4)

where D is the travel distance of the keystroke, and S is
the target size (width of the key).

4) Movement angle of the keystroke (A): In 2-D aiming task,
the movement angle was found to be influential for aim-
ing performance [49], [51]. The movement angles were
quantified in a 360° polar coordinate where moving right
A was 0°, left 180°, upward 90°, and downward 270°.

C. Feature Combination and Data Classification

Three subsets of 18-D EEG features (3 features/electrode ×
6 electrodes = 18 features for each keystroke) were collected
through the experiment in Section III. The three types of fea-
tures (EEG features, modeling features, and task features) were
further combined into four datasets (see Table II):

1) an EEG only set contained only 18-D EEG features;
2) a behaviors only set contained both apparent task features

and advanced modeling features derived from interaction
between tasks and behaviors;

3) an EEG + Task set contained 18-D EEG features and 4-D
task features;

4) an EEG + Model set contained 18-D EEG features and
4-D modeling features.

Since there were three subsets of EEG features representing
psychophysiological responses in different time windows be-
fore each keystroke, they were combined to task features and

modeling features alternately and the combined data went
through the LDA training process one by one. All data points in
a given set were equally1 divided into two nonoverlap subsets:
a training set consisting of data collected earlier in an experi-
mental trial and a query set consisting of data collected later.
It was assumed that the best training performance will indi-
cate the best time window to extract EEG features, e.g., if the
training data extracted in a window from 450 to 300 ms be-
fore the keystroke yielded the best training accuracy, the query
set should contain EEG features extracted from the same time
window (−450 to −300 ms). The LDA training process was
completed by using Minitab software package (Minitab Inc.,
Pennsylvania, USA) and the concept of determining the query
set is depicted in Fig. 5. After the training, the software produced
the decision boundary of the trained LDA classifier as well as
the Mahalanobis distance2 of each data point to the group center

D(x,mi) = (x − mi)tΣ−1(x − mi), i = c or e (5)

where x denotes a p-dimensional feature vector that represents
all features relevant to a keystroke; mc and me are the p-
dimensional sample mean of the classified correct response
group and erroneous response group, respectively. Σ is the
pooled covariance matrix for two groups. Then, the rule of
classification can be expressed by the following:

Classify x into Dc if
D(x,me)/D(x,mc) > criterion

else
Classify x into De .

(6)

The criterion of classification should be set to 1. The crite-
rion, however, could be manipulated to increase the keenness of
LDA classifier to the errors. Raising the criterion value would
increase both the hit rate and the false alarm rate. A keenness
analysis was, thus, needed to determine optimal criterion for the
ratio D(x,me)/D(x,mc) greater than 1 (the baseline) that
provides the highest d-prime for the receiver’s operating char-
acteristic (ROC) curve, i.e., d′ = Z(Hit) − Z(FalseAlarm))
and AUC. A VBA program was coded to perform this analysis
by adjusting the ratio between the two Mahalanobis distances
as a criterion of classification.

D. Data Analysis

The LDA classification results for EEG only, behaviors only,
EEG + Task, and EEG + model models in terms of training

1Whether there were equal numbers of data in the training and query set
depended on whether there was an even or odd number of correct/incorrect
responses in each trial. If there was an even number of correct/incorrect re-
sponses, they were equally assigned into training and query set. If there were
an odd number of correct/incorrect responses, the training set would have one
more data point than the query set.

2The Mahalanobis Distance is the distance between the test point x to the
center of a set of given sample points that definitely belong to that set (e.g., the set
of correct responses or errors), taking into account the correlations of the data set.
When data points are distributed in p-dimensional space, whether the test point
is close to the average or center of the sample points determines its membership
to the data set. In those directions where data points are spread out over a large
range, the test point can be relatively further away from the center but still
belongs to the set. Therefore, Mahalanobis distance corresponds to Euclidean
distance in the transformed space based on the shape of the distribution.
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TABLE II
FEATURES USED IN EEG ONLY, EEG + TASK, AND EEG + MODEL SET

Feature EEG only Behaviors only EEG + Task EEG + Model

EEG temporal EEG amplitude N/C EEG amplitude EEG amplitude
at FC3, FCZ, C3, at FC3, FCZ, C3, CZ, CP3, and at FC3, FCZ, C3, CZ, CP3, and
CZ, CP3, and CPZ CPZ
CPZ

Task N/C∗ Number to be pressed Number to be pressed N/C
Quickness of previous Quickness of previous
keystroke keystroke
Fitts’ difficulty index Fitts’ difficulty index
Movement angle Movement angle

Modeling N/C Predicted response time N/C Predicted response time
Predict shift in X direction Predict shift in X direction
Predict shift in Y direction Predict shift in Y direction
Estimated Interference % Estimated Interference %

∗N/C: not included.

Fig. 5. Determining the query set.

accuracy, hit rates, and false alarm rates were calculated by the
VBA program. First, the ROC curve was obtained by manipu-
lating the classification criterion in (6). Then, the best keenness
of detection in query and AUC obtained through the manipu-
lation were computed. Finally, pair-wise comparisons for the
AUC achieved by different models were conducted using the
Minitab statistical software.

V. RESULTS

The classification results for using EEG only dataset are listed
in Table III. After an initial inspection of typing performance,
data from two subjects (subjects 1 and 4) were excluded due to
their extremely high accuracy in numerical typing (insufficient
samples of errors in the training set). Using only temporal EEG
features from the remaining six subjects, the LDA classifier
achieved keenness d′ = 0.60 and area under ROC curve AUC =
0.56. The AUC for all subjects were above chance level (50%)
except for subject 8, and errors could be detected as early as
300 ms before keystrokes (the training accuracy was found in
the subwindow 300 to 450 ms before keystrokes).

The classification results for using the “behaviors only” set
are listed in Table IV. On average, the keenness decreased 3.3%
and AUC decreased 8.9% from the classification results using
EEG only. For four out of six subjects, the AUC decreased but
overall the decrease was not significant statistically. The only

pair-wise comparison for AUC that was significant was behav-
iors only versus EEG + Model (t5 = 3.15; p = 0.025). The
results showed that relying on behavioral data only was not as
effective as using psychophysiological feedback because behav-
ioral data provided only general inclinations of making errors
but contained no real-time information for motor preparation
and execution as psychophysiological feedback did.

The classification results for using EEG + Task set are listed
in Table V. On average, the keenness of the LDA classifier
increased 3.2% and AUC increased 3.6%, comparing with clas-
sification results when EEG only set was used. There was a
trend for one pair-wise comparison for AUC: EEG + task ver-
sus EEG + Model (t5 = 2.27; p = 0.072). In addition, AUC of
two out of six subjects became worse. The results showed that
adding features derived from apparent task characteristics did
not necessarily benefit error classification in numerical typing.

The classification results for using EEG + model set are
listed in Table VI. The LDA classifier obtained 28.3% increase
in keenness and 10.7% increase in AUC. The EEG only versus
EEG + Model comparison for AUC was significant (t5 = 3.99;
p = 0.010). All six subjects obtained better AUC. Therefore,
modeling features effectively improved error classification re-
sults using LDA and EEG + Model features were relatively
robust than EEG + Task features.

It might be arguable that modeling features had advantages
over task features because experimental conditions, such as
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TABLE III
CLASSIFICATION RESULTS FOR EEG ONLY SET

Subject Best Interval1 CR2 Training Accuracy Prediction (Query)

Hit Rate False Alarm Keenness3 AUC4

2 (−150, 0) 1.25 70.40% 95.65% 83.62% 0.73 0.56
3 (−450, −300) 1.14 65.30% 97.37% 80.88% 1.06 0.58
5 (−150, 0) 1.02 69.50% 52.00% 32.80% 0.50 0.61
6 (−150, 0) 1.12 67.60% 88.57% 70.45% 0.67 0.59
7 (−450, −300) 1.19 69.30% 94.44% 82.38% 0.66 0.57
8 (−450, −300) 1.05 65.00% 58.62% 58.36% 0.01 0.45

Average - 67.34% 81.11% 68.08% 0.60 0.56

1Best interval indicates which of the three subsets of EEG temporal features was selected. Negative value means before
keystroke in units of milliseconds. The best interval was selected based on the training results with cross-validation,
i.e., the interval during which the training accuracy with cross-validation is the highest was selected.
2CR is the best criterion (CR > 1) set in decision rule (6) which generated the highest d-prime. A CR > 1 rendered
the classifier more sensitive to error detection (higher hit rate) and susceptible to false alarms.
3Keenness (d’) varied using different CR. Here, the best d’ (the point at which ROC curve was best separated from
chance level) was listed with its corresponding hit and false alarm rates.
4AUC is the area under the ROC curve; the + /− sign after AUC value signifies whether the AUC increased/decreased
comparing with when EEG only set was used.

TABLE IV
CLASSIFICATION RESULTS FOR BEHAVIORS ONLY SET

Subject Best Interval1 CR2 Training Accuracy Prediction (Query)

Hit Rate False Alarm Keenness3 AUC4

2 - 1.62 65.50% 100.00% 100.00% 0.50 0.52−
3 - 1.15 68.90% 96.15% 84.47% 0.76 0.62+
5 - 1.00 56.60% 45.45% 38.33% 0.18 0.44−
6 - 0.60 65.50% 5.26% 0.49% 0.96 0.58−
7 - 1.35 66.10% 90.91% 83.58% 0.28 0.44−
8 - 1.11 63.90% 90.48% 68.94% 0.82 0.48+

Average - 64.42% 71.38% 62.64% 0.58 0.51−

1For behavioral features, there was only one subset because they are not collected in real time and contained no
temporal information, i.e., they did not vary with time.
2CR is the best criterion (CR > 1) set in decision rule (6) which generated the highest d-prime. A CR > 1 rendered
the classifier more sensitive to error detection (higher hit rate) and susceptible to false alarms.
3Keenness (d’) varied using different CR. Here, the best d’ (the point at which ROC curve was best separated from
chance level) was listed with its corresponding hit and false alarm rates.
4AUC is the area under the ROC curve; the + /− sign after AUC value signifies whether the AUC increased/decreased
comparing with when EEG only set was used.

TABLE V
CLASSIFICATION RESULTS FOR EEG + TASK SET

Subject Best Interval1 CR2 Training Accuracy Prediction (Query)

Hit Rate False Alarm Keenness3 AUC4

2 (−300, 150) 1.16 74.90% 93.75% 66.34% 1.11 0.59+
3 (−450, −300) 1.05 68.30% 57.69% 47.56% 0.26 0.58−
5 (−150, 0) 1.00 73.00% 54.55% 25.33% 0.78 0.64+
6 (−150, 0) 1.15 71.40% 80.00% 71.88% 0.26 0.54−
7 (−150, 0) 1.21 87.60% 81.82% 41.98% 1.11 0.63+
8 (−450, −300) 1.05 68.10% 61.90% 53.12% 0.22 0.47+

Average - 73.88% 71.62% 51.04% 0.62 0.58+

1Best interval indicates which of the three subsets of EEG temporal features was selected. Negative value means before
keystroke in units of milliseconds. The best interval was selected based on the training results with cross-validation,
i.e., the interval during which the training accuracy with cross-validation is the highest was selected.
2CR is the best criterion (CR > 1) set in decision rule (6) which generated the highest d-prime. A CR > 1 rendered
the classifier more sensitive to error detection (higher hit rate) and susceptible to false alarms.
3Keenness (d’) varied using different CR. Here, the best d’ (the point at which ROC curve was best separated from
chance level) was listed with its corresponding hit and false alarm rates.
4AUC is the area under the ROC curve; the + /− sign after AUC value signifies whether the AUC increased/decreased
comparing with when EEG only set was used.
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TABLE VI
CLASSIFICATION RESULTS FOR EEG + MODEL SET

Subject Best Interval1 CR2 Training Accuracy Prediction (Query)

Hit Rate False Alarm Keenness3 AUC4

2 (−150, 0) 1.33 97.10% 87.50% 53.70% 1.06 0.68+
3 (−300, −150) 1.17 91.50% 88.46% 66.09% 0.78 0.65+
5 (−450, −300) 1.11 94.20% 61.54% 39.18% 0.56 0.62+
6 (−150, 0) 1.26 89.70% 95.00% 76.66% 0.92 0.64+
7 (−300, −150) 2.18 99.20% 75.00% 42.74% 0.86 0.64+
8 (−450, −300) 1.09 70.30% 80.95% 67.21% 0.43 0.49+

Average - 90.33% 81.41% 57.60% 0.77 0.62+

1Best interval indicates which of the three subsets of EEG temporal features was selected. Negative value means before
keystroke in units of milliseconds. The best interval was selected based on the training results with cross-validation,
i.e., the interval during which the training accuracy with cross-validation is the highest was selected.
2CR is the best criterion (CR > 1) set in decision rule (6) which generated the highest d-prime. A CR > 1 rendered
the classifier more sensitive to error detection (higher hit rate) and susceptible to false alarms.
3Keenness (d’) varied using different CR. Here, the best d’ (the point at which ROC curve was best separated from
chance level) was listed with its corresponding hit and false alarm rates.
4AUC is the area under the ROC curve; the + /− sign after AUC value signifies whether the AUC increased/decreased
comparing with when EEG only set was used.

TABLE VII
CLASSIFICATION RESULTS FOR EEG + T&C SET

Subject Best Interval1 CR2 Training Accuracy Prediction (Query)

Hit Rate False Alarm Keenness3 AUC4

2 (−300, 150) 1.17 75.80% 93.75% 71.90% 0.95 0.58+
3 (−450, −300) 1.15 68.90% 96.15% 82.84% 0.82 0.58+
5 (−150, 0) 1.00 74.30% 54.55% 24.76% 0.80 0.65+
6 (−150, 0) 1.20 71.60% 94.74% 86.52% 0.52 0.58−
7 (−150, 0) 1.24 87.70% 81.82% 49.91% 0.91 0.64+
8 (−450, −300) 1.20 68.60% 95.24% 92.81% 0.21 0.49+

Average - 74.48% 86.04% 68.12% 0.70 0.59+

1Best interval indicates which of the three subsets of EEG temporal features was selected. Negative value means before
keystroke in units of milliseconds. The best interval was selected based on the training results with cross-validation,
i.e., the interval during which the training accuracy with cross-validation is the highest was selected.
2CR is the best criterion (CR > 1) set in decision rule (6) which generated the highest d-prime. A CR > 1 rendered
the classifier more sensitive to error detection (higher hit rate) and susceptible to false alarms.
3Keenness (d’) varied using different CR. Here, the best d’ (the point at which ROC curve was best separated from
chance level) was listed with its corresponding hit and false alarm rates.
4AUC is the area under the ROC curve; the + /− sign after AUC value signifies whether the AUC increased/decreased
comparing with when EEG only set was used.

speech rates, finger typing strategies, and urgency levels of typ-
ing, were inputs to the behavioral model but not used to generate
task features. Thus, an extra dummy feature (C) was coded to
signify experimental conditions (e.g., 1 = fast speech, multifin-
ger typing, and nonurgent condition) and added to EEG + Task
set. The classification results using this new dataset (EEG +
T&C) are shown in Table VII. Adding information of experi-
mental conditions improved keenness by 16.6% and increased
AUC by 5.4%. There was a trend for the pair-wise comparison:
EEG only versus EEG + T&C (tdf1,df2 = −2.22; p = 0.077).
The ROC curves of the LDA classifier using five different fea-
ture sets are plotted in Fig. 6. From Fig. 6, the ROC curves
of the EEG + Model sets are separated from the chance level
(diagonal line in the graphs) and the curves of the EEG only
sets, while the ROC curves of the EEG + T&C sets almost
overlap the curves of the EEG + Task sets. ROC curves of
LDA classifiers using the “behaviors only” set generated poor

results. Therefore, the enhanced QN-MHP model transformed
task-relevant information into distinct features that were other-
wise unavailable from EEG and task features. Combining mod-
eling features with EEG features improves classification results
because interactions between experimental conditions and task
characteristics were considered based on advanced top-down
inference and integrated with bottom-up real-time analysis on
psychophysiological feedback.

VI. DISCUSSION

Integrating modeling features produced by an advanced hu-
man behavior model with real-time psychophysiological (EEG)
features could produce better error prediction results by an LDA
classifier. In contrast, adding features derived from apparent
task characteristics and even environmental conditions barely
benefitted data mining. Integration of data mining and human
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Fig. 6. ROC curves of the LDA classifier using different feature sets.

behavior modeling utilized both 1) top-down inference to trans-
form interactions between experimental conditions and task
characteristics into inclination of an average operator to make
errors and 2) bottom-up analysis to parse real-time EEG that
is indicative of psychophysiological status into likelihood of
making errors on a trial-by-trial basis to generate informative
features. The advantage of integration was observed by compar-

ing results from using EEG only, behaviors only, and EEG +
Model feature sets. Neither using EEG only nor behaviors only
features alone was enough for error prediction. A combination
of both real-time psychological feedback (EEG) and derived
behavioral signals (modeling features) produced better results.

The integration is compatible with the notion of analysis by
synthesis approach, and it was attempted before by using inverse
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models for reconstructing intracranial activity to help increase
accuracy in EEG recognition for BCI applications [39]. Our en-
hanced QN-MHP is somewhat like an inverse model for EEG
classification associated with errors, because it reconstructed
what happened in perceptual, cognitive, and motor subnetworks
(see Fig. 3) given task conditions and generated informational
indices (predicted movement time, interference levels, and spa-
tial variability) for error making in general. EEG, on the other
hand, provided real-time information about motor preparation
and execution as they varied with time. Our novelties, compar-
ing with using inverse models, were to utilize both observable
human behaviors (predicted movement time and spatial variabil-
ity) and nonobservable behaviors (cognitive interference level)
by prediction and compare their effectiveness with apparent
features available without having a model. Applications of data
mining techniques to analyze error-related EEG patterns gen-
erally provide 5 to 10% improvements in performance [29],
[30], and this study demonstrated integration of modeling and
EEG features can give another 28.3% increase in keenness and
10.7% increase in AUC, superior to 4% increase when an inverse
model was used to reconstruct brain activities [39]. Therefore,
the human behavior model essentially provided data mining
classifier some “internal messages” that could not be obtained
through simply processing task characteristics or environmental
conditions.

The current study used a linear classifier and achieved a com-
parable performance to [22] in terms of AUC (the current study:
0.63 versus the previous study: 0.64). The previous study, how-
ever, achieved the best performance by using a sophisticated
SVM classifier and all 36 EEG channels. The current study was
able to achieve a similar performance by using straightforward
temporal features (EEG amplitudes) from only six EEG chan-
nels with help of modeling features. The results thus demon-
strated that modeling features possess considerable potential as
supplementary information resource to the formation of human
errors even if a simple linear data classifier is used. One lim-
itation of the current study is that the enhanced QN-MHP for
typing may not work for other tasks because it was tuned for
predicting typing behaviors on physical keyboards. Typing on
touch-based keyboards, for example, may cause alternation in
behaviors in that lack of tactile feedback from key press may
increase visual demand, and our model in its current status will
not make good predictions for that. This does not necessarily
mean that integration cannot be generalized to other tasks, but
another effective human behavior model must exist for a partic-
ular situation, or the enhanced QN-MHP needs to be expanded
to cover predictions of other tasks.

Nevertheless, advanced morphological features and
frequency-related features, as well as other data mining
techniques such as SVMs or ANNs, may be worth trying with
other contrast enhancing methods to investigate the potential
of integration of modeling features. In other BCI application
studies, error detection/prediction mechanism did not work for
some subjects (success in six out of seven subjects in [29];
seven out of eight subjects in [30]; five out of seven subjects
in [31], [32]). Compared with those application studies, our
method worked for all six subjects, i.e., using EEG + Model

increased AUC from using EEG only. Subject 8 was the only
one whose AUC was less than 0.5. This subject had 2.5 times as
many typing errors as the most accurate subject. His relatively
poor performance might indicate carelessness which could
have caused less distinguishable psychophysiological feedback
and resulted in outlier results in classification. Whether the
performance was degraded due to decreasing engagement or
increasing number of errors, however, needs to be confirmed in
future studies where subjects’ engagement can be measured.
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